• Description

Evidence-based practice is important for behavioral interventions but there is debate on how best to support real-world behavior change. The purpose of this paper is to define products and a preliminary process for efficiently and adaptively creating and curating a knowledge base for behavior change for real-world implementation. We look to evidence-based practice suggestions and draw parallels to software development. We argue to target three products: (1) the smallest, meaningful, self-contained, and repurposable behavior change modules of an intervention; (2) ?computational models? that define the interaction between modules, individuals, and context; and (3) ?personalization? algorithms, which are decision rules for intervention adaptation. The ?agile science? process includes a generation phase whereby contender operational definitions and constructs of the three products are created and assessed for feasibility and an evaluation phase, whereby effect size estimates/casual inferences are created. The process emphasizes early-and-often sharing. If correct, agile science could enable a more robust knowledge base for behavior change

Agile science: creating useful products for behavior change in the real world