Clear all

2 results found

reorder grid_view

Longitudinal effects on mental health of moving to greener and less green urban areas

December 9, 2013

Despite growing evidence of public health benefits from urban green space there has been little longitudinal analysis. This study used panel data to explore three different hypotheses about how moving to greener or less green areas may affect mental health over time. The samples were participants in the British Household Panel Survey with mental health data (General Health Questionnaire scores) for five consecutive years, and who relocated to a different residential area between the second and third years (n = 1064; observations = 5320). Fixed-effects analyses controlled for time-invariant individual level heterogeneity and other area and individual level effects. Compared to premove mental health scores, individuals who moved to greener areas (n = 594) had significantly better mental health in all three postmove years (P = .015; P = .016; P = .008), supporting a "shifting baseline" hypothesis. Individuals who moved to less green areas (n = 470) showed significantly worse mental health in the year preceding the move (P = .031) but returned to baseline in the postmove years. Moving to greener urban areas was associated with sustained mental health improvements, suggesting that environmental policies to increase urban green space may have sustainable public health benefits.

Eutrophication of US Freshwaters: Analysis of Potential Economic Damages

January 1, 2008

Human-induced eutrophication degrades freshwater systems worldwide by reducing water quality and altering ecosystem structure and function. We compared current total nitrogen (TN) and phosphorus (TP) concentrations for the U.S. Environmental Protection Agency nutrient ecoregions with estimated reference conditions. In all nutrient ecoregions, current median TN and TP values for rivers and lakes exceeded reference median values. In 12 of 14 ecoregions, over 90% of rivers currently exceed reference median values. We calculated potential annual value losses in recreational water usage, waterfront real estate, spending on recovery of threatened and endangered species, and drinking water. The combined costs were approximately $2.2 billion annually as a result of eutrophication in U.S. freshwaters. The greatest economic losses were attributed to lakefront property values ($0.3−2.8 billion per year, although this number was poorly constrained) and recreational use ($0.37−1.16 billion per year). Our evaluation likely underestimates economic losses incurred from freshwater eutrophication. We document potential costs to identify where restoring natural nutrient regimes can have the greatest economic benefits. Our research exposes gaps in current records (e.g., accounting for frequency of algal blooms and fish kills) and suggests further research is necessary to refine cost estimates.