Clear all

9 results found

reorder grid_view

Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area

July 24, 2019

The Phoenix Islands Protected Area (PIPA), one of the world's largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015–2017 and using a biological-physical model to estimate spawning locations for collected larvae. Temperature and chlorophyll conditions varied markedly due to observed ENSO states: El Niño (2015) and neutral (2016–2017). However, larval tuna distributions were similar amongst years. Generally, skipjack larvae were patchy and more abundant near PIPA's northeast corner, while Thunnus larvae exhibited lower and more even abundances. Genetic barcoding confirmed the presence of bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna larvae. Model simulations indicated that most of the larvae collected inside PIPA in 2015 were spawned inside, while stronger currents in 2016 moved more larvae across PIPA's boundaries. Larval distributions and relative spawning output simulations indicated that both focal taxa spawned inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat.

Stemming the Tide of Coastal Overfishing: Fish Forever Program Results 2012–2017

July 1, 2018

Fish Forever is the first global solution that brings together 30-plus years of Rare's experience in community empowerment, social marketing and behavior adoption with the technical, policy and financial skills needed to secure lasting results for people and nature.This report describes the results of 41 Fish Forever sites, representing over 250 communities across Brazil, Indonesia and the Philippines. It is the first opportunity to analyze the past five years of design (2012–14) and implementation (2014–17). Using a comprehensive monitoring and evaluation protocol, the report synthesizes information from three country learning reports, 2,400 in-water surveys of coral reefs, 15,000 individual and household surveys, and the landing records from nearly 56,000 fishing trips — and represents the work of 70 Rare staff and 80 partner organizations who have committed the time of more than 557 global staff to this project.Ecological and social responses to three years of program implementation are promising, and importantly, results from the data infer that Fish Forever is working:* Ecologically, fish are recovering — fish biomass is increasing, both inside and outside no-take reserves;* Socially, communities are empowered — social resilience, pride and livelihoods are improving;* 51 legal and functional management bodies were established across the 41 sites;* 63 managed access areas were built or strengthened, encompassing nearly 600,000 hectares of coastal waters with 27,000 hectares secured in fully protected reserves; and* Strengthened policies and governance provide a clear path to scale.The initial implementation period has been an enormously valuable learning experience for Rare and our partners. This report is an opportunity to reflect on Fish Forever's impact and consider our work in the coming years.

Protecting marine mammals, turtles, and birds by rebuilding global fisheries

March 16, 2018

Reductions in global fishing pressure are needed to end overfishing of target species and maximize the value of fisheries. We ask whether such reductions would also be sufficient to protect non–target species threatened as bycatch. We compare changes in fishing pressure needed to maximize profits from 4713 target fish stocks—accounting for >75% of global catch—to changes in fishing pressure needed to reverse ongoing declines of 20 marine mammal, sea turtle, and seabird populations threatened as bycatch. We project that maximizing fishery profits would halt or reverse declines of approximately half of these threatened populations. Recovering the other populations would require substantially greater effort reductions or targeting improvements. Improving commercial fishery management could thus yield important collateral benefits for threatened bycatch species globally.

Global fishery prospects under contrasting management regimes

May 3, 2016

Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous—the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. The results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.

Marine Biodiversity and Ecosystem Health of Ilhas Selvagens, Portugal

May 1, 2016

In September 2015, National Geographic's Pristine Seas project, in conjunction with the Instituto Universitário-Portugal, The Waitt Institute, the University of Western Australia, and partners conducted a comprehensive assessment of the rarely surveyed Ilhas Selvagens to explore the marine environment, especially the poorly understood deep sea and open ocean areas, and quantify the biodiversity of the nearshore marine environment.

Vertical and Horizontal Movements of a Silvertip Shark (Carcharhinus Albimarginatus) in the Fijian Archipelago

July 14, 2015

Despite widespread distribution and occurrence in the global shark fin trade, information regarding fundamental biology of the silvertip shark, especially vertical and horizontal movement data, is sparse. Its habitat-faithful nature, confined geographical populations, and life history suggest silvertip sharks are vulnerable to overexploitation, particularly in heavily longlined regions with limited offshore management, such as the Fijian archipelago. Diel depth differences and expanded daytime depth use could indicate foraging behavior, routine predator avoidance, or temperature selection. Typically, pelagic species are more heavily impacted by commercial longline fishing than reef-associated species, particularly in regions such as Fiji, where reefs are locally managed. The apparent mix of reef-associated and pelagic behaviors, coupled with high levels of commercial longlining in the region make the silvertip shark especially vulnerable to exploitation. Limited sample size prevented drawing any conclusions about the species, but these preliminary results suggest in order to be effectively managed the silvertip shark warrants additional movement studies and stock assessment surveys throughout it range.

Marine Communities on Oil Platforms in Gabon, West Africa: High Biodiversity Oases in a Low Biodiversity Environment

August 1, 2014

The marine biodiversity of Gabon, West Africa has not been well studied and is largely unknown. Our examination of marine communities associated with oil platforms in Gabon is the first scientific investigation of these structures and highlights the unique ecosystems associated with them. A number of species previously unknown to Gabonese waters were recorded during our surveys on these platforms. Clear distinctions in benthic communities were observed between older, larger platforms in the north and newer platforms to the south or closer to shore. The former were dominated by a solitary cup coral, Tubastraea sp., whereas the latter were dominated by the barnacle Megabalanus tintinnabulum, but with more diverse benthic assemblages compared to the northerly platforms. Previous work documented the presence of limited zooxanthellated scleractinian corals on natural rocky substrate in Gabon but none were recorded on platforms. Total estimated fish biomass on these platforms exceeded one ton at some locations and was dominated by barracuda (Sphyraena spp.), jacks (Carangids), and rainbow runner (Elagatis bipinnulata). Thirty-four percent of fish species observed on these platforms are new records for Gabon and 6% are new to tropical West Africa. Fish assemblages closely associated with platforms had distinct amphi-Atlantic affinities and platforms likely extend the distribution of these species into coastal West Africa. At least one potential invasive species, the snowflake coral (Carijoa riisei), was observed on the platforms. Oil platforms may act as stepping stones, increasing regional biodiversity and production but they may also be vectors for invasive species. Gabon is a world leader in terrestrial conservation with a network of protected areas covering >10% of the country. Oil exploration and biodiversity conservation currently co-exist in terrestrial and freshwater ecosystems in Gabon. Efforts to increase marine protection in Gabon may benefit by including oil platforms in the marine protected area design process.

A General Business Model for Marine Reserves

April 3, 2013

Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models.

The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present)

December 2, 2010

Using estimates of the primary production required (PPR) to support fisheries catches (a measure of the footprint of fishing), we analyzed the geographical expansion of the global marine fisheries from 1950 to 2005. We used multiple threshold levels of PPR as percentage of local primary production to define 'fisheries exploitation' and applied them to the global dataset of spatially-explicit marine fisheries catches. This approach enabled us to assign exploitation status across a 0.5° latitude/longitude ocean grid system and trace the change in their status over the 56-year time period. This result highlights the global scale expansion in marine fisheries, from the coastal waters off North Atlantic and West Pacific to the waters in the Southern Hemisphere and into the high seas. The southward expansion of fisheries occurred at a rate of almost one degree latitude per year, with the greatest period of expansion occurring in the 1980s and early 1990s. By the mid 1990s, a third of the world's ocean, and two-thirds of continental shelves, were exploited at a level where PPR of fisheries exceed 10% of PP, leaving only unproductive waters of high seas, and relatively inaccessible waters in the Arctic and Antarctic as the last remaining 'frontiers.' The growth in marine fisheries catches for more than half a century was only made possible through exploitation of new fishing grounds. Their rapidly diminishing number indicates a global limit to growth and highlights the urgent need for a transition to sustainable fishing through reduction of PPR.